Lattice and Off-Lattice Side Chain Models of Protein Folding: Linear Time Structure Prediction Better than 86% of Optimal
نویسندگان
چکیده
This paper considers the protein energy minimization problem for lattice and off-lattice protein folding models that explicitly represent side chains. Lattice models of proteins have proven useful tools for reasoning about protein folding in unrestricted continuous space through analogy. This paper provides the first illustration of how rigorous algorithmic analyses of lattice models can lead to rigorous algorithmic analyses of off-lattice models. We consider two side chain models: a lattice model that generalizes the HP model (Dill, 1985) to explicitly represent side chains on the cubic lattice and a new off-lattice model, the HP Tangent Spheres Side Chain model (HP-TSSC), that generalizes this model further by representing the backbone and side chains of proteins with tangent spheres. We describe algorithms with mathematically guaranteed error bounds for both of these models. In particular, we describe a linear time performance guaranteed approximation algorithm for the HP side chain model that constructs conformations whose energy is better than 86% of optimal in a face-centered cubic lattice, and we demonstrate how this provides a better than 70% performance guarantee for the HP-TSSC model. Our analysis provides a mathematical methodology for transferring performance guarantees on lattices to off-lattice models. These results partially answer the open question of Ngo et al. (1994) concerning the complexity of protein folding models that include side chains.
منابع مشابه
Combinatorial Algorithms for Protein Folding in Lattice Models: a Survey of Mathematical Results∗
We present a comprehensive survey of combinatorial algorithms and theorems about lattice protein folding models obtained in the almost 15 years since the publication in 1995 of the first protein folding approximation algorithm with mathematically guaranteed error bounds [60]. The results presented here are mainly about the HP-protein folding model introduced by Ken Dill in 1985 [37]. The main t...
متن کاملApproximate Protein Folding in the HP Side Chain Model on Extended Cubic Lattices
One of the most important open problems in computational biology is the prediction of the conformation of a protein based on its amino acid sequence. In this paper, we design approximation algorithms for protein structure prediction in the so-called HP side chain model. The major drawback of the standard HP side chain model is the bipartiteness of the cubic lattice. To eliminate this drawback, ...
متن کاملOptimization of Protein Structure on Lattices Using a Self-Consistent Field Approach
Lattice modeling of proteins is commonly used to study the protein folding problem. The reduced number of possible conformations of lattice models enormously facilitates exploration of the conformational space. In this work, we suggest a method to search for the optimal lattice models that reproduced the off-lattice structures with minimal errors in geometry and energetics. The method is based ...
متن کاملProducing High-Accuracy Lattice Models from Protein Atomic Coordinates Including Side Chains
Lattice models are a common abstraction used in the study of protein structure, folding, and refinement. They are advantageous because the discretisation of space can make extensive protein evaluations computationally feasible. Various approaches to the protein chain lattice fitting problem have been suggested but only a single backbone-only tool is available currently. We introduce LatFit, a n...
متن کاملMonte Carlo simulations of protein folding. I. Lattice model and interaction scheme.
A new hierarchical method for the simulation of the protein folding process and the de novo prediction of protein three-dimensional structure is proposed. The reduced representation of the protein alpha-carbon backbone employs lattice discretizations of increasing geometrical resolution and a single ball representation of side chain rotamers. In particular, coarser and finer lattice backbone de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of computational biology : a journal of computational molecular cell biology
دوره 4 3 شماره
صفحات -
تاریخ انتشار 1997